

Tetrahedron Letters 46 (2005) 5277-5279

Tetrahedron Letters

Synthesis of 1,2,9,10-tetrakis(N-phenylamino)[2.2]metacyclophane by SmI₂-mediated reductive coupling of diimine

Takatoshi Kawaji,^{a,*} Kikue Hayashi,^a Iwao Hashimoto,^a Taisuke Matsumoto,^b Thies Thiemann^b and Shuntaro Mataka^b

^aDepartment of Materials Science, Wakayama National College of Technology, 77, Noshima, Nada, Gobo, Wakayama 644-0023, Japan

^bInstitute of Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koh-en, Kasuga, Fukuoka 816-8580, Japan Received 30 April 2005; revised 7 June 2005; accepted 9 June 2005

Abstract—SmI₂/HMPA-mediated double reductive coupling of N,N'-(m-xylylidene)dianiline affords 1,2,9,10-tetrakis(N-phenylamino)[2.2]metacyclophane in good yield. © 2005 Elsevier Ltd. All rights reserved.

Reductive coupling reaction of imines (imino-pinacol coupling) is an important method to form a carbon-carbon bond with 1,2-diamino moieties. The reaction is mediated by various metal reagents^{2–5} such as zinc powder, low-valent titanium, and divalent samarium. An intramolecular version of the reaction affords the corresponding cyclic 1,2-diamines from bis-imines.⁶ To the best of our knowledge, however, bimolecular cyclization by double reductive coupling of diimines has not been investigated. Recently, it was reported that highly strained all-equatorial-1,2,9,10-tetrahydroxy[2.2]metacyclophanes (MCPs) were produced in the intermolecular double pinacol coupling of benzene-1,3-dialdehydes in one step, by using aluminum as a mediator under strongly alkaline conditions. Unfortunately, this procedure failed to give the corresponding [2.2]MCP-1,2,9,10tetraamine derivatives when applied to a benzene-1, 3-diimine. Under the same conditions, only polymeric products were formed. We now report our finding that 1,2,9,10-tetrakis(N-phenylamino)[2.2]MCP 2 was obtained successfully by the SmI2-mediated double reductive coupling of N,N'-(m-xylylidene)dianiline 1.

Keywords: Diimine; Reductive coupling; Samarium diiodide; [2.2]-Metacyclophane.

The SmI₂-mediated imino-pinacol coupling of 1 was carried out in THF and the desired 1,2,9,10-tetrakis(N-phenylamino)[2.2]MCP 2 was formed as a mixture of two stereoisomers, 2(I) and 2(II) in the yields shown in Table 1.8 A mixture 4 of higher homologues was also obtained. The isomers of the [2.2]MCP 2 were separated through column chromatography. The structures were determined by spectral data and elemental analyses9 and established by X-ray crystallographic analyses. 10 The [2.2]MCP skeleton of 2(I) and 2(II) has anti-conformation. Isomer 2(I) has four N-phenylamino groups all in equatorial positions, whereas 2(II) is a racemate that has three equatorial and one axial N-phenylamino groups (Figs. 1 and 2). The yields of 2 are dependent upon the additives (Table 1). HMPA¹¹ and DMPU¹² are known to promote SmI₂-mediated pinacol coupling of carbonyl compounds¹³ and also are effective for the double imino-pinacol coupling of 1. The addition of DMPU raised the yield of 2 up to 29% (entry 2) from 10% obtained in the reaction without additive (entry 1). A more remarkable increase (62%) was observed by the addition of four equivalents of HMPA (entry 3). The reductive cyclization proceeded less effectively at the lowered temperature, giving 2 in 50% yield. Diamine 3 was formed as a side product in 15% yield (entry 4). Isomer 2(II) was obtained as a major product in the reactions mentioned above (entry 1-4), though 2(II) seems sterically less favored than 2(I) having N-phenylamino

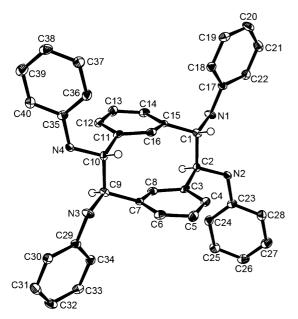
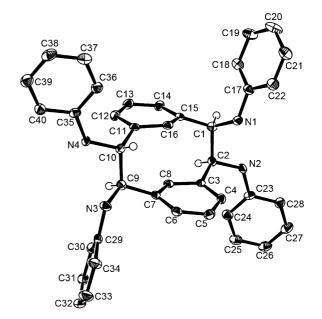

^{*}Corresponding author. Tel.: +81 738 29 8417; fax: +81 738 29 8439; e-mail: kawaji@wakayama-nct.ac.jp

Table 1. Reaction of diimine 1 with SmI2 under several conditions

Entry	Conditions			Isolated yield (%)			
	Additive	Temperature (°C)	Time (h)	2	(I/II) ^b	3	4°
1	_	65	24	10	(13/87)	nd ^d	90
2	$\mathrm{DMPU}^{\mathrm{a}}$	65	24	29	(12/88)	nd^d	71
3	$HMPA^{a}$	65	0.5	62	(40/60)	nd^d	38
4	$HMPA^{a}$	20	0.5	50	(36/64)	15	35


^a Additives were used four equivalent to Sm(II).

^d Not detected.

Figure 1. X-ray crystal structure of **2(I)**. Solvent molecule (1,4-dioxane) and H atoms except those on C1, C2, C9, and C10 are omitted for clarity. 10

groups all on equatorial positions. In order to obtain the informations about the selectivity on the first-step intermolecular reductive coupling of $\mathbf{1}$, N-benzylideneaniline (PhCH=NPh) was treated under the same conditions with those of entry 3 in Table 1. The corresponding 1,2-diamine was obtained in 97% yield with a low diastereoselectivity (dl/meso = 60/40). Suppose that the first-step intermolecular coupling of $\mathbf{1}$ proceeds in a non-selective manner, the observed diastereomeric ratio of $\mathbf{2}$ ($\mathbf{I}/\mathbf{II} = 40/60$) in entry 3 suggests that the second-step intramolecular reaction proceeds with a low diastereoselectivity. Tetraamine isomers having more than two axial N-phenylamino groups are unfavorable due to steric reasons.

Figure 2. X-ray crystal structure of $(1R^*, 2S^*, 9R^*, 10R^*)$ -**2(II**). Solvent molecule (acetone) and H atoms except those on C1, C2, C9, and C10 are omitted for clarity. ¹⁰

In conclusion, we have achieved the first synthesis of a [2.2]MCP-1,2,9,10-tetraamine via double imino-pinacol coupling of a benzene-1,3-diimine. Further work is under way to elucidate the mechanism and scope of the reductive cyclization.

References and notes

- 1. For review: Robertson, G. M. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, pp 563–611.
- Zn/acid: (a) Shono, T.; Kise, N.; Oike, H.; Yoshimoto, M.; Okazaki, E. *Tetrahedron Lett.* 1992, 33, 5559–5562;
 (b) Kise, N.; Oike, H.; Okazaki, E.; Yoshimoto, M.; Shono, T. *J. Org. Chem.* 1995, 60, 3980–3992; (c)

^b Diastereomer ratio.

^c Weight percent yield.

- Hesemann, P.; Moreau, J. J. E.; Soto, T. Synth. Commun. **2003**, *33*, 183–189.
- 3. Low-valent Ti: (a) Mangeney, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J. Synthesis 1988, 255–257; (b) Betschart, C.; Schmidt, B.; Seebach, D. Helv. Chim. Acta 1988, 71, 1999–2021; (c) Liao, P.; Huang, Y.; Zhang, Y. Synth. Commun. 1997, 27, 1483–1486; (d) Chen, J.; Li, J.; Yu, M.-H.; Chen, W.-X. Org. Prep. Proced. Int. 1997, 29, 569–571; (e) Talukdar, S.; Banerji, A. J. Org. Chem. 1998, 63, 3468–3470; (f) Periasamy, M.; Srinivas, G.; Karunakar, G. V.; Bharathi, P. Tetrahedron Lett. 1999, 40, 7577–7580.
- SmI₂: (a) Imamoto, T.; Nishimura, S. *Chem. Lett.* 1990, 1141–1142; (b) Enholm, E. J.; Forbes, D. C.; Holub, D. P. *Synth. Commun.* 1990, 20, 981–987; (c) Kim, M.; Knettle, B. W.; Dahlén, A.; Hilmersson, G.; Flowers, R. A., II. *Tetrahedron* 2003, 59, 10397–10402; (d) Annunziata, R.; Benaglia, M.; Caporale, M.; Raimondi, L. *Tetrahedron: Asymmetry* 2002, 13, 2727–2734; (e) Machrouhi, F.; Namy, J.-L. *Tetrahedron Lett.* 1999, 40, 1315–1318; (f) Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Raimondi, L. *Tetrahedron Lett.* 1998, 39, 3333–3336; (g) Taniguchi, N.; Uemura, M. *Tetrahedron* 1998, 54, 12775–12788.
- 5. Selected other reagents: Na: (a) Smith, J. G.; Ho, I. J. Org. Chem. 1972, 37, 653–656; Mg/MgI₂: (b) Bachmann, W. E. J. Am. Chem. Soc. 1931, 53, 2672–2676; Cp₂VCl₂/Zn/ Me₃SiCl: (c) Hatano, B.; Ogawa, A.; Hirao, T. J. Org. Chem. 1998, 63, 9421-9424; Mn: (d) Rieke, R. D.; Kim, S.-H. J. Org. Chem. 1998, 63, 5235–5239; Zn-Cu/CSA: (e) Shimizu, M.; Iida, T.; Fujisawa, T. Chem. Lett. 1995, 609-610; InCl₃/Al/Me₃SiCl: (f) Ohtaka, S.; Mori, K.; Uemura, S. Heteroatom Chem. **2001**, 12, 309–316; La/I₂: (g) Nishino, T.; Nishiyama, Y.; Sonoda, N. Heteroatom Chem. 2002, 13, 131-135; Sm/I2: (h) Yanada, R.; Negoro, N.; Okaniwa, M.; Miwa, M.; Taga, T.; Yanada, K.; Fujita, T. Synlett 1999, 537-540; Yb: (i) Takaki, K.; Tsubaki, Y.; Tanaka, S.; Beppu, F.; Fujiwara, Y. Chem. Lett. 1990, 203-204; PbBr₂/Al/TFA: (j) Tanaka, H.; Dhimane, H.; Fujita, H.; Ikemoto, Y.; Torii, S. Tetrahedron Lett. 1988, 29, 3811-3814.
- (a) Periasamy, M.; Srinivas, G.; Suresh, S. Tetrahedron Lett. 2001, 42, 7123–7125; (b) Larsen, A. O.; Taylor, R. A.; White, P. S.; Gagné, M. R. Organometallics 1999, 18, 5157–5162; (c) Taniguchi, N.; Hata, T.; Uemura, M. Angew. Chem., Int. Ed. 1999, 38, 1232–1234, See also; Refs. 2b, 2c, and 4d.
- (a) Sahade, D. A.; Mataka, S.; Sawada, T.; Tsukinoki, T.; Tashiro, M. *Tetrahedron Lett.* 1997, 38, 3745–3746; (b) Sahade, D. A.; Tsukamoto, K.; Thiemann, T.; Sawada, T.; Mataka, S. *Tetrahedron* 1999, 55, 2573–2580.
- 8. Representative procedure (entry 3 in Table 1): 0.1 M SmI₂-THF solution was prepared from Sm (turnings, 3.0 mmol) and iodine (2.5 mmol) in dry THF (25 ml) under reflux over 6 h under argon. HMPA (10 mmol) was added to the resulting 0.1 M SmI₂-THF solution. To the solution under reflux, a solution of 1 (1.0 mmol) in THF (10 ml) was added at once. ¹⁴ The reaction mixture was stirred at 65 °C for 0.5 h under argon, then cooled to room temperature, and quenched with MeOH (0.5 ml). After additional stirring for 1 h, saturated Na₂SO₃ solution (20 ml) and brine (30 ml) were added to the reaction mixture, then the mixture was filtered through a Celite pad. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (15 ml × 3). The

- organic layer and the extract were combined, washed with water ($10 \text{ ml} \times 5$) and brine ($20 \text{ ml} \times 2$), dried over anhydrous Na₂SO₄, and concentrated in vacuo to give a pale yellow solid. The solid was column chromatographed on silica gel (Wako-gel, C-300). The first fraction eluted with benzene gave **2**(**I**) and the second one gave **2**(**II**). Finally, **4** was eluted with ethyl acetate.
- 9. Compound 2(I): Colorless prisms (hexane/CH₂Cl₂); Mp 256–258 °C; IR (KBr) ν 3359, 3052, 1601, 1503, 1426, 1314, 1267, 750 cm⁻¹; ¹H NMR (CDCl₃) δ 3.88 (s, 4H), 4.79 (s, 2H), 4.86 (s, 4H), 6.67 (d, J = 7.6 Hz, 8H), 6.74 (t, J = 7.6 Hz, 4H), 7.16 (t, J = 7.6 Hz, 8H), 7.30 (t, J = 7.3 Hz, 2H), 7.42 (d, J = 7.3 Hz, 4H); ¹³C NMR (CDCl₃) δ 66.8, 114.4, 118.3, 124.5, 129.1, 129.3, 134.0, 137.5, 146.7; HRMS (FAB) calcd for C₄₀H₃₇N₄ (M+H⁺): 573.3021, found: 573.3013. Anal. Calcd for C₄₀H₃₆N₄: C, 83.88; H, 6.34; N, 9.78. Found: C, 83.92; H, 6.36; N, 9.82. Compound 2(II): Colorless prisms (acetone/H₂O); Mp 202–205 °C; IR (KBr) v 3400, 3050, 1601, 1501, 1428, 1314, 1262, 750 cm⁻¹; ¹H NMR (CDCl₃) δ 3.79–3.91 (m, 3H), 4.16-4.19 (m, 1H), 4.63 (s, 1H), 4.80 (d, J = 5.5 Hz, 1H), 4.84 (d, J = 5.2 Hz, 1H), 4.88 (s, 1H), 4.99 (d, J = 5.8 Hz, 1H), 5.12 (dd, J = 9.6, 3.6 Hz, 1H), 6.58–7.41 (m, 26H); 13 C NMR (CDCl₃) δ 63.2, 65.0, 66.4, 66.6, 113.7, 114.2, 114.38, 114.41, 117.7, 118.3, 118.4, 118.5, 124.5, 124.6, 124.7, 127.3, 128.26, 128.33, 129.22, 129.28, 129.30, 129.37, 131.8, 133.6, 134.1, 137.4, 138.5, 138.7, 146.1, 146.4, 146.5, 146.7; HRMS (FAB) calcd for C₄₀H₃₇N₄ (M+H⁺): 573.3021, found: 573.3018. Anal. Calcd for C₄₀H₃₆N₄: C, 83.88; H, 6.34; N, 9.78. Found: C, 83.91; H, 6.29; N, 9.83.
- 10. Crystal data for **2(I)**: $C_{40}H_{36}N_4 \cdot (C_4H_8O_2)_4$, FW = 925.18, colorless prism, triclinic, space group: P-1, T = 123 K, a =9.784(5) Å, b = 10.323(5) Å, c = 13.921(7) Å, $\alpha = 100.760(4)^{\circ}$, $\beta = 105.151(5)^{\circ}$, $\gamma = 109.287(5)^{\circ}$, $V = 1222.1(11) \text{ Å}^3$, Z = 1, $D_c = 1.257 \text{ g cm}^{-3}$, F(000) = 496, $\mu(\text{Mo K}\alpha) = 0.84 \text{ cm}^{-1}$, Final $R_1 = 0.052$ (for 5321 reflections with $I > 2\sigma$ (I)) and $wR_2 = 0.109$ for all data. ORTEP diagram is given in Figure 1. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre; deposition number CCDC 259438. Crystal data for **2(II)**: $C_{40}H_{36}N_4 \cdot (C_3H_6O)_2$, FW = 688.91, colorless prism, monoclinic, space group: $P2_1/n$, T =123 K, a = 9.438(2) Å, b = 19.887(4) Å, c = 20.119(5) Å, $\beta = 97.3043(11)^{\circ}$, $V = 3745.5(15) \text{ Å}^3$, Z = 4, $D_c = 1.222 \text{ g} \text{ cm}^{-3}$, F(000) = 1472, $\mu(\text{Mo K}\alpha) = 0.75 \text{ cm}^{-1}$, Final $R_1 =$ 0.055 (for 8446 reflections with $I > 2\sigma(I)$) and $wR_2 = 0.088$ for all data. ORTEP diagram is given in Figure 2. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre; deposition number CCDC 259439.
- Inanaga, J.; Ishikawa, M.; Yamaguchi, M. Chem. Lett. 1987, 1485–1486.
- Fevig, T. L.; Elliott, R. L.; Curran, D. P. J. Am. Chem. Soc. 1988, 110, 5064–5067.
- For recent reviews: (a) Kagan, H. B.; Namy, J.-L. In Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed.; Springer: Berlin, 1999, p 155; (b) Kagan, H. B. Tetrahedron 2003, 59, 10351–10372; (c) Dahlén, A.; Hilmersson, G. Eur. J. Inorg. Chem. 2004, 3393–3403.
- 14. A slow dropwise addition (30 min) of diimine 1 in THF (0.1 M) did not improve the yield of 2. Also the reaction at a dilute concentration (0.025 M) was ineffective to raise the yield.